MFEM  v4.6.0
Finite element discretization library
ex1.cpp
Go to the documentation of this file.
1 // MFEM Example 1
2 //
3 // Compile with: make ex1
4 //
5 // Sample runs: ex1 -m ../data/square-disc.mesh
6 // ex1 -m ../data/star.mesh
7 // ex1 -m ../data/star-mixed.mesh
8 // ex1 -m ../data/escher.mesh
9 // ex1 -m ../data/fichera.mesh
10 // ex1 -m ../data/fichera-mixed.mesh
11 // ex1 -m ../data/toroid-wedge.mesh
12 // ex1 -m ../data/octahedron.mesh -o 1
13 // ex1 -m ../data/periodic-annulus-sector.msh
14 // ex1 -m ../data/periodic-torus-sector.msh
15 // ex1 -m ../data/square-disc-p2.vtk -o 2
16 // ex1 -m ../data/square-disc-p3.mesh -o 3
17 // ex1 -m ../data/square-disc-nurbs.mesh -o -1
18 // ex1 -m ../data/star-mixed-p2.mesh -o 2
19 // ex1 -m ../data/disc-nurbs.mesh -o -1
20 // ex1 -m ../data/pipe-nurbs.mesh -o -1
21 // ex1 -m ../data/fichera-mixed-p2.mesh -o 2
22 // ex1 -m ../data/star-surf.mesh
23 // ex1 -m ../data/square-disc-surf.mesh
24 // ex1 -m ../data/inline-segment.mesh
25 // ex1 -m ../data/amr-quad.mesh
26 // ex1 -m ../data/amr-hex.mesh
27 // ex1 -m ../data/fichera-amr.mesh
28 // ex1 -m ../data/mobius-strip.mesh
29 // ex1 -m ../data/mobius-strip.mesh -o -1 -sc
30 //
31 // Device sample runs:
32 // ex1 -pa -d cuda
33 // ex1 -fa -d cuda
34 // ex1 -pa -d raja-cuda
35 // * ex1 -pa -d raja-hip
36 // ex1 -pa -d occa-cuda
37 // ex1 -pa -d raja-omp
38 // ex1 -pa -d occa-omp
39 // ex1 -pa -d ceed-cpu
40 // ex1 -pa -d ceed-cpu -o 4 -a
41 // ex1 -pa -d ceed-cpu -m ../data/square-mixed.mesh
42 // ex1 -pa -d ceed-cpu -m ../data/fichera-mixed.mesh
43 // * ex1 -pa -d ceed-cuda
44 // * ex1 -pa -d ceed-hip
45 // ex1 -pa -d ceed-cuda:/gpu/cuda/shared
46 // ex1 -pa -d ceed-cuda:/gpu/cuda/shared -m ../data/square-mixed.mesh
47 // ex1 -pa -d ceed-cuda:/gpu/cuda/shared -m ../data/fichera-mixed.mesh
48 // ex1 -m ../data/beam-hex.mesh -pa -d cuda
49 // ex1 -m ../data/beam-tet.mesh -pa -d ceed-cpu
50 // ex1 -m ../data/beam-tet.mesh -pa -d ceed-cuda:/gpu/cuda/ref
51 //
52 // Description: This example code demonstrates the use of MFEM to define a
53 // simple finite element discretization of the Laplace problem
54 // -Delta u = 1 with homogeneous Dirichlet boundary conditions.
55 // Specifically, we discretize using a FE space of the specified
56 // order, or if order < 1 using an isoparametric/isogeometric
57 // space (i.e. quadratic for quadratic curvilinear mesh, NURBS for
58 // NURBS mesh, etc.)
59 //
60 // The example highlights the use of mesh refinement, finite
61 // element grid functions, as well as linear and bilinear forms
62 // corresponding to the left-hand side and right-hand side of the
63 // discrete linear system. We also cover the explicit elimination
64 // of essential boundary conditions, static condensation, and the
65 // optional connection to the GLVis tool for visualization.
66 
67 #include "mfem.hpp"
68 #include <fstream>
69 #include <iostream>
70 
71 using namespace std;
72 using namespace mfem;
73 
74 int main(int argc, char *argv[])
75 {
76  // 1. Parse command-line options.
77  const char *mesh_file = "../data/star.mesh";
78  int order = 1;
79  bool static_cond = false;
80  bool pa = false;
81  bool fa = false;
82  const char *device_config = "cpu";
83  bool visualization = true;
84  bool algebraic_ceed = false;
85 
86  OptionsParser args(argc, argv);
87  args.AddOption(&mesh_file, "-m", "--mesh",
88  "Mesh file to use.");
89  args.AddOption(&order, "-o", "--order",
90  "Finite element order (polynomial degree) or -1 for"
91  " isoparametric space.");
92  args.AddOption(&static_cond, "-sc", "--static-condensation", "-no-sc",
93  "--no-static-condensation", "Enable static condensation.");
94  args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
95  "--no-partial-assembly", "Enable Partial Assembly.");
96  args.AddOption(&fa, "-fa", "--full-assembly", "-no-fa",
97  "--no-full-assembly", "Enable Full Assembly.");
98  args.AddOption(&device_config, "-d", "--device",
99  "Device configuration string, see Device::Configure().");
100 #ifdef MFEM_USE_CEED
101  args.AddOption(&algebraic_ceed, "-a", "--algebraic", "-no-a", "--no-algebraic",
102  "Use algebraic Ceed solver");
103 #endif
104  args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
105  "--no-visualization",
106  "Enable or disable GLVis visualization.");
107  args.Parse();
108  if (!args.Good())
109  {
110  args.PrintUsage(cout);
111  return 1;
112  }
113  args.PrintOptions(cout);
114 
115  // 2. Enable hardware devices such as GPUs, and programming models such as
116  // CUDA, OCCA, RAJA and OpenMP based on command line options.
117  Device device(device_config);
118  device.Print();
119 
120  // 3. Read the mesh from the given mesh file. We can handle triangular,
121  // quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
122  // the same code.
123  Mesh mesh(mesh_file, 1, 1);
124  int dim = mesh.Dimension();
125 
126  // 4. Refine the mesh to increase the resolution. In this example we do
127  // 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
128  // largest number that gives a final mesh with no more than 50,000
129  // elements.
130  {
131  int ref_levels =
132  (int)floor(log(50000./mesh.GetNE())/log(2.)/dim);
133  for (int l = 0; l < ref_levels; l++)
134  {
135  mesh.UniformRefinement();
136  }
137  }
138 
139  // 5. Define a finite element space on the mesh. Here we use continuous
140  // Lagrange finite elements of the specified order. If order < 1, we
141  // instead use an isoparametric/isogeometric space.
143  bool delete_fec;
144  if (order > 0)
145  {
146  fec = new H1_FECollection(order, dim);
147  delete_fec = true;
148  }
149  else if (mesh.GetNodes())
150  {
151  fec = mesh.GetNodes()->OwnFEC();
152  delete_fec = false;
153  cout << "Using isoparametric FEs: " << fec->Name() << endl;
154  }
155  else
156  {
157  fec = new H1_FECollection(order = 1, dim);
158  delete_fec = true;
159  }
160  FiniteElementSpace fespace(&mesh, fec);
161  cout << "Number of finite element unknowns: "
162  << fespace.GetTrueVSize() << endl;
163 
164  // 6. Determine the list of true (i.e. conforming) essential boundary dofs.
165  // In this example, the boundary conditions are defined by marking all
166  // the boundary attributes from the mesh as essential (Dirichlet) and
167  // converting them to a list of true dofs.
168  Array<int> ess_tdof_list;
169  if (mesh.bdr_attributes.Size())
170  {
171  Array<int> ess_bdr(mesh.bdr_attributes.Max());
172  ess_bdr = 1;
173  fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
174  }
175 
176  // 7. Set up the linear form b(.) which corresponds to the right-hand side of
177  // the FEM linear system, which in this case is (1,phi_i) where phi_i are
178  // the basis functions in the finite element fespace.
179  LinearForm b(&fespace);
180  ConstantCoefficient one(1.0);
181  b.AddDomainIntegrator(new DomainLFIntegrator(one));
182  b.Assemble();
183 
184  // 8. Define the solution vector x as a finite element grid function
185  // corresponding to fespace. Initialize x with initial guess of zero,
186  // which satisfies the boundary conditions.
187  GridFunction x(&fespace);
188  x = 0.0;
189 
190  // 9. Set up the bilinear form a(.,.) on the finite element space
191  // corresponding to the Laplacian operator -Delta, by adding the Diffusion
192  // domain integrator.
193  BilinearForm a(&fespace);
194  if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
195  if (fa)
196  {
197  a.SetAssemblyLevel(AssemblyLevel::FULL);
198  // Sort the matrix column indices when running on GPU or with OpenMP (i.e.
199  // when Device::IsEnabled() returns true). This makes the results
200  // bit-for-bit deterministic at the cost of somewhat longer run time.
201  a.EnableSparseMatrixSorting(Device::IsEnabled());
202  }
203  a.AddDomainIntegrator(new DiffusionIntegrator(one));
204 
205  // 10. Assemble the bilinear form and the corresponding linear system,
206  // applying any necessary transformations such as: eliminating boundary
207  // conditions, applying conforming constraints for non-conforming AMR,
208  // static condensation, etc.
209  if (static_cond) { a.EnableStaticCondensation(); }
210  a.Assemble();
211 
212  OperatorPtr A;
213  Vector B, X;
214  a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
215 
216  cout << "Size of linear system: " << A->Height() << endl;
217 
218  // 11. Solve the linear system A X = B.
219  if (!pa)
220  {
221 #ifndef MFEM_USE_SUITESPARSE
222  // Use a simple symmetric Gauss-Seidel preconditioner with PCG.
223  GSSmoother M((SparseMatrix&)(*A));
224  PCG(*A, M, B, X, 1, 200, 1e-12, 0.0);
225 #else
226  // If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
227  UMFPackSolver umf_solver;
228  umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
229  umf_solver.SetOperator(*A);
230  umf_solver.Mult(B, X);
231 #endif
232  }
233  else
234  {
235  if (UsesTensorBasis(fespace))
236  {
237  if (algebraic_ceed)
238  {
239  ceed::AlgebraicSolver M(a, ess_tdof_list);
240  PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
241  }
242  else
243  {
244  OperatorJacobiSmoother M(a, ess_tdof_list);
245  PCG(*A, M, B, X, 1, 400, 1e-12, 0.0);
246  }
247  }
248  else
249  {
250  CG(*A, B, X, 1, 400, 1e-12, 0.0);
251  }
252  }
253 
254  // 12. Recover the solution as a finite element grid function.
255  a.RecoverFEMSolution(X, b, x);
256 
257  // 13. Save the refined mesh and the solution. This output can be viewed later
258  // using GLVis: "glvis -m refined.mesh -g sol.gf".
259  ofstream mesh_ofs("refined.mesh");
260  mesh_ofs.precision(8);
261  mesh.Print(mesh_ofs);
262  ofstream sol_ofs("sol.gf");
263  sol_ofs.precision(8);
264  x.Save(sol_ofs);
265 
266  // 14. Send the solution by socket to a GLVis server.
267  if (visualization)
268  {
269  char vishost[] = "localhost";
270  int visport = 19916;
271  socketstream sol_sock(vishost, visport);
272  sol_sock.precision(8);
273  sol_sock << "solution\n" << mesh << x << flush;
274  }
275 
276  // 15. Free the used memory.
277  if (delete_fec)
278  {
279  delete fec;
280  }
281 
282  return 0;
283 }
Class for domain integration L(v) := (f, v)
Definition: lininteg.hpp:108
int visport
Class for grid function - Vector with associated FE space.
Definition: gridfunc.hpp:30
A coefficient that is constant across space and time.
Definition: coefficient.hpp:84
void PrintOptions(std::ostream &out) const
Print the options.
Definition: optparser.cpp:331
int Dimension() const
Dimension of the reference space used within the elements.
Definition: mesh.hpp:1020
void PrintUsage(std::ostream &out) const
Print the usage message.
Definition: optparser.cpp:462
Pointer to an Operator of a specified type.
Definition: handle.hpp:33
T Max() const
Find the maximal element in the array, using the comparison operator < for class T.
Definition: array.cpp:68
virtual void GetEssentialTrueDofs(const Array< int > &bdr_attr_is_ess, Array< int > &ess_tdof_list, int component=-1)
Get a list of essential true dofs, ess_tdof_list, corresponding to the boundary attributes marked in ...
Definition: fespace.cpp:587
void Print(std::ostream &out=mfem::out)
Print the configuration of the MFEM virtual device object.
Definition: device.cpp:279
bool Good() const
Return true if the command line options were parsed successfully.
Definition: optparser.hpp:159
STL namespace.
bool UsesTensorBasis(const FiniteElementSpace &fes)
Return true if the mesh contains only one topology and the elements are tensor elements.
Definition: fespace.hpp:1306
int main(int argc, char *argv[])
Definition: ex1.cpp:74
Data type for Gauss-Seidel smoother of sparse matrix.
Direct sparse solver using UMFPACK.
Definition: solvers.hpp:1070
void Parse()
Parse the command-line options. Note that this function expects all the options provided through the ...
Definition: optparser.cpp:151
char vishost[]
Data type sparse matrix.
Definition: sparsemat.hpp:50
Jacobi smoothing for a given bilinear form (no matrix necessary).
Definition: solvers.hpp:302
double b
Definition: lissajous.cpp:42
void UniformRefinement(int i, const DSTable &, int *, int *, int *)
Definition: mesh.cpp:10232
virtual const char * Name() const
Definition: fe_coll.hpp:80
void CG(const Operator &A, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Conjugate gradient method. (tolerances are squared)
Definition: solvers.cpp:898
void PCG(const Operator &A, Solver &B, const Vector &b, Vector &x, int print_iter, int max_num_iter, double RTOLERANCE, double ATOLERANCE)
Preconditioned conjugate gradient method. (tolerances are squared)
Definition: solvers.cpp:913
virtual int GetTrueVSize() const
Return the number of vector true (conforming) dofs.
Definition: fespace.hpp:712
Array< int > bdr_attributes
A list of all unique boundary attributes used by the Mesh.
Definition: mesh.hpp:275
double Control[UMFPACK_CONTROL]
Definition: solvers.hpp:1081
Class FiniteElementSpace - responsible for providing FEM view of the mesh, mainly managing the set of...
Definition: fespace.hpp:219
Collection of finite elements from the same family in multiple dimensions. This class is used to matc...
Definition: fe_coll.hpp:26
void AddOption(bool *var, const char *enable_short_name, const char *enable_long_name, const char *disable_short_name, const char *disable_long_name, const char *description, bool required=false)
Add a boolean option and set &#39;var&#39; to receive the value. Enable/disable tags are used to set the bool...
Definition: optparser.hpp:82
virtual void Mult(const Vector &b, Vector &x) const
Operator application: y=A(x).
Definition: solvers.cpp:3194
int Height() const
Get the height (size of output) of the Operator. Synonym with NumRows().
Definition: operator.hpp:66
int GetNE() const
Returns number of elements.
Definition: mesh.hpp:1086
Wrapper for AlgebraicMultigrid object.
Definition: algebraic.hpp:185
double a
Definition: lissajous.cpp:41
A "square matrix" operator for the associated FE space and BLFIntegrators The sum of all the BLFInteg...
int dim
Definition: ex24.cpp:53
int Size() const
Return the logical size of the array.
Definition: array.hpp:141
Vector data type.
Definition: vector.hpp:58
virtual void Print(std::ostream &os=mfem::out) const
Definition: mesh.hpp:2011
Arbitrary order H1-conforming (continuous) finite elements.
Definition: fe_coll.hpp:259
Vector with associated FE space and LinearFormIntegrators.
Definition: linearform.hpp:24
void GetNodes(Vector &node_coord) const
Definition: mesh.cpp:8302
virtual void Save(std::ostream &out) const
Save the GridFunction to an output stream.
Definition: gridfunc.cpp:3696
The MFEM Device class abstracts hardware devices such as GPUs, as well as programming models such as ...
Definition: device.hpp:121
virtual void SetOperator(const Operator &op)
Factorize the given Operator op which must be a SparseMatrix.
Definition: solvers.cpp:3099